Skip to main content

递归与迭代

1. 阶乘计算

计算一个数的阶乘,展示递归和迭代两种实现方式。

// 递归实现
const factorialRecursive = (n) => {
if (n <= 1) return 1;
return n * factorialRecursive(n - 1);
};

// 迭代实现
const factorialIterative = (n) => {
let result = 1;
for (let i = 2; i <= n; i++) {
result *= i;
}
return result;
};

2. 数组扁平化

将多维数组转换为一维数组。

// 递归实现
const flattenRecursive = (arr) => {
return arr.reduce((flat, item) => {
return flat.concat(Array.isArray(item) ? flattenRecursive(item) : item);
}, []);
};

// 迭代实现
const flattenIterative = (arr) => {
const stack = [...arr];
const result = [];

while (stack.length) {
const next = stack.pop();
if (Array.isArray(next)) {
stack.push(...next);
} else {
result.unshift(next);
}
}

return result;
};

3. 深拷贝

实现对象的深拷贝。

// 递归实现
const deepCloneRecursive = (obj) => {
if (obj === null || typeof obj !== 'object') return obj;

const clone = Array.isArray(obj) ? [] : {};

for (let key in obj) {
if (Object.prototype.hasOwnProperty.call(obj, key)) {
clone[key] = deepCloneRecursive(obj[key]);
}
}

return clone;
};

// 迭代实现
const deepCloneIterative = (obj) => {
const stack = [[obj, {}]];
const rootClone = stack[0][1];

while (stack.length) {
const [original, clone] = stack.pop();

for (let key in original) {
if (Object.prototype.hasOwnProperty.call(original, key)) {
const value = original[key];

if (value === null || typeof value !== 'object') {
clone[key] = value;
} else {
clone[key] = Array.isArray(value) ? [] : {};
stack.push([value, clone[key]]);
}
}
}
}

return rootClone;
};

4. 树的遍历

实现树结构的遍历。

class TreeNode {
constructor(val) {
this.val = val;
this.left = null;
this.right = null;
}
}

// 递归实现前序遍历
const preorderTraversalRecursive = (root) => {
const result = [];

const traverse = (node) => {
if (!node) return;
result.push(node.val); // 根
traverse(node.left); // 左
traverse(node.right); // 右
};

traverse(root);
return result;
};

// 迭代实现前序遍历
const preorderTraversalIterative = (root) => {
if (!root) return [];

const result = [];
const stack = [root];

while (stack.length) {
const node = stack.pop();
result.push(node.val);

// 先压入右节点,再压入左节点,这样出栈时就是先左后右
if (node.right) stack.push(node.right);
if (node.left) stack.push(node.left);
}

return result;
};

5. 汉诺塔问题

经典的汉诺塔问题解法。

// 递归实现
const hanoiRecursive = (n, source, auxiliary, target) => {
if (n === 1) {
console.log(`Move disk 1 from ${source} to ${target}`);
return;
}

hanoiRecursive(n - 1, source, target, auxiliary);
console.log(`Move disk ${n} from ${source} to ${target}`);
hanoiRecursive(n - 1, auxiliary, source, target);
};

// 迭代实现
const hanoiIterative = (n) => {
const totalMoves = Math.pow(2, n) - 1;
const isEven = n % 2 === 0;

for (let i = 1; i <= totalMoves; i++) {
const disk = getBit(i);
const from = getSource(disk, i, isEven);
const to = getTarget(disk, i, isEven);

console.log(`Move disk ${disk} from ${from} to ${to}`);
}
};

// 辅助函数
const getBit = (n) => {
let count = 1;
while ((n & 1) === 0) {
count++;
n >>= 1;
}
return count;
};

const getSource = (disk, move, isEven) => {
const position = Math.floor(move % 3);
if (isEven) {
return ['A', 'C', 'B'][position];
}
return ['A', 'B', 'C'][position];
};

const getTarget = (disk, move, isEven) => {
const position = Math.floor((move + 1) % 3);
if (isEven) {
return ['B', 'A', 'C'][position];
}
return ['C', 'A', 'B'][position];
};

每个示例都包含了递归和迭代两种实现方式,并附带详细注释。递归通常代码更简洁,逻辑更清晰,但在处理大规模数据时可能会导致栈溢出。迭代虽然代码较长,但性能通常更好,且不会有栈溢出的问题。在实际开发中,应根据具体场景选择合适的实现方式。